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Department of Physics, University of Oslo, P.O. Box 1048 Blindern, N-0316 Oslo, Norway

Received: 19 January 1999 / Published online: 18 June 1999

Abstract. We discuss a model for heavy mesons where the light quark (u or d) moves in the colour-electric
field from a heavy quark (c or b) placed in the center of a bag. We calculate energy spectra for pionic
and photonic transitions from excited states. The transition amplitudes and the branching ratios between
electromagnetic and pionic transitions compare favorably with the limited amount of known experimental
data.

1 Introduction

Heavy-quark spectroscopy is a very interesting and re-
warding subject for study. The discovery of charmonium
definitively swept away all doubts the physics commu-
nity had about the existence of quarks as the fundamental
building blocks of hadrons.

Mesons consisting of one heavy and one light quark
(denoted Qq̄) are a further excellent subject on which to
test our ideas about strong interactions. These mesons
are, in a way, the hydrogen atoms of quark physics. As
the mass of the heavy quark increases, its motion becomes
gradually less and less important, and the physical prop-
erties of the heavy–light meson, Qq, are more and more
determined by the dynamics of the light quark.

The discovery of the heavy-quark symmetries by Isgur
and Wise [1,2] and the creation of a heavy-quark effective
theory from QCD [3–5] have been extremely important for
the analysis of the physics of heavy hadrons [6].

Ideally, one would like to compute the couplings in
the baryon and meson Lagrangian from QCD; in time,
this should be provided by lattice QCD calculations. In
the meantime, model calculations can be useful, and one
might hope that these give us some physical insight for
the long-distance behavior of quark interaction.

2 The model

There are many models used in quark physics; we have
chosen a variant of the MIT bag model that was created by
W. Wilcox, O. V. Maxwell and K. A. Milton [7] (WWM),
at a time when there was little information about excited
systems made of one heavy and one light quark.

The model makes for a nice theoretical laboratory; it
lends itself to analytical calculations, and seems to give
results that are not too far from experimental results.
In particular, it seems to work well for calculations of

the Isgur–Wise function [8] and to represent an improve-
ment over the results from the MIT bag model [9]. In
the WMM model, the heavy quark is placed in the center
of the bag, and the light quark moves within the colour-
electromagnetic field set up by the heavy quark. The Hamil-
tonian for the light quark is then

H = H0 +HI (1)

where

H0 = α · p + βm+ gtlaV
a, ta ≡ λa

2
a = 1, . . . , 8 (2)

and

HI = −gtlaα · Aa. (3)

ta represents a generator of the SU(3)C colour group. The
index l (h) refers to the light (heavy) quark. We have
used Aµ

a = (Va,Aa) and the usual notation αi = γ0γi

and β = γ0, where the γs are the Dirac matrices, and λa

the Gellman matrices. Va and Aa are the colour-electric
potentials and vector fields respectively produced by the
heavy quark.

As gluon self-couplings are neglected and the heavy
quark is treated as point-like, the potentials have a
Coulomb-like form:

Va =
gtha

4πr
. (4)

Substituting these potentials into equation (2) gives us:

H0 = α · p + βm+
g2tal tha

4πr
. (5)

Using the constraint that the meson is a colour singlet,
that is, tal tha = −4/3, the Hamiltonian of the light quark
in the meson rest frame is then simply

H0 = α · p + βm− ξ

r
, (6)
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Fig. 1. Energy levels inside a bag with radius R = 5GeV−1

where ξ = (4/3)αs = (4/3)(g2/4π).
The four-component wave function ψ(r) of the light

quark ( ignoring HI) is therefore the well-known solution
for the relativistic Coulomb problem. We shall use the
notation

ψ(r) =
(
g(r)χµ

κ

if(r)χµ
−κ

)
, (7)

where χµ
κ is the two-component spinor describing the an-

gular part of the wave function.
The energy of the confined light quark is determined by

the Bogolioubov–MIT boundary condition [10,11] which
in the rest frame of the meson, takes the form
−i(r̂ ×γ)ψ = ψ. Substituting equation (7) into this equa-
tion and using the following property (σ × r̂)χµ

κ = −χµ
−κ,

we get:

f(R) + g(R) = 0, (8)

where R is the radius of the spherical bag. The confine-
ment of the light quark, presumably originating from the
gluonic self-couplings, is now taken care of by (8) and the
surface conditions

r̂ × Ea = 0 (9)
r̂ × Ba = 0. (10)

The vector fields Aa that are set up by the heavy quark
and fulfill the boundary conditions (10), are

Aa =
1
4π

(
ma × r̂

r3
+

ma × r̂

2R3

)
, (11)

where ma are the colour-magnetic moments of the heavy
quark:

ma =
gtha

Mh
S. (12)

Mh is the mass of the heavy quark and S its spin operator.
HI can now be written:

HI =
αstlath

a

Mh
S · (α × r̂)

(
1
r2

+
r

2R3

)
(13)

The contribution of HI to the energy is calculated pertur-
batively, and the hyperfine splitting energy to first order
in αs is

E1
I =

8
3
αs

M

κ

4κ2 − 1

(
F (F + 1) − J(J + 1) − 3

4

)

× 1
N

∫ R

0
dr

(
2 +

r3

R3

)
f(r)∗g(r). (14)

N is the normalization of the wave function, N ≡ ∫ R

0 drr2

(|f(r)|2 + |g(r)|2). Here F is the total angular momentum
of the mesonic system and J is the light-quark (total)
angular momentum. From (14), we see if Mh → ∞ then
E1

I → 0; this is the heavy-quark limit.
The mass function for a heavy meson described in our

model will be:

M = M(R) = EVol + EZero +mQ + Eq, (15)

where EVol = (4π/3)BR3 is the energy needed to create
a bag in a vacuum, EZero is the zero-point energy propor-
tional to 1/R, mQ is the heavy-quark mass, and Eq is the

light-quark energy Eq ≡
√
p2

q +m2
q + E1

I , where E1
I is the

hyperfine splitting energy to first order given in (14). From
(15), we observe that if the radii of two mesons (with the
same flavour of the heavy quark) are kept constant, then
the mass difference between them is given by the following
formula:

∆M = Eq(nLJ) − Eq(n′L′
J′). (16)

This means that if the radii of two mesons do not differ
too much, then the difference between the energy levels is
directly related to the mass difference of the two mesons.

It is of interest first to see how the energy levels of
the meson are ordered in the heavy-quark limit when the
colour-electric central potential increases, these are shown
in Fig. 1.

As we can see, an increase in the central field from
the special case where the light quark moves freely in the
bag reduces the masses of the P states, and even makes
them cross. The odd-parity states, however, stay roughly
half-way between the ground state and the first excited S
state. This will lead to some difficulties when we try to fit
the spectra of heavy- meson states.

The breaking of the heavy-quark limit is given by the
spin–spin interaction and, in our model, by the term E1

I ,
as given (14). It should be noted that this term is depen-
dent on αs, which determines the strength of the central
four-vector potential the light quark moves in. In this re-
spect, our model is more constraining than most models
where the interquark central potential is unrelated to the
strength of the spin–spin and spin–orbit interaction.

In Fig. 2, we have plotted the energy levels for the light
quark in the case where M = mb for constant R. In this
graph, we have also plotted the heavy-quark limit; the
energy level above the heavy-quark limit is for each pair
of states, where the spin of the light quark and the heavy
quark couples to S = 1, and the level below is for the case
where the spins couple to S = 0.
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Fig. 2. The energy of a (massless) light quark inside a Coulomb
bag with radius R = 5GeV−1 and the mass of a heavy quark
mb = 4730 MeV

We see that for a given heavy-quark multiplet, the
induced splitting of formerly degenerate states with the
same angular momentum, J for the light quark, but with
different angular momentums, F , for the meson, is a highly
nonlinear function of αs. Only for αs smaller than 0.2 is
it a reasonable approximation to take the hyperfine split-
ting as a linear function of αs (as it is in the nonrelativistic
quark model treatment).

From Fig. 2 we also note that the hyperfine splitting
(for finite ξ) increases as light-quark excitations increase.
This is quite opposite from the situation for the hydro-
gen atom, and is a reflection of the bag model’s abrupt
confinement.

For the charm sector, it is reasonable only for the two
lowest states to calculate the hyperfine splitting perturba-
tively, this is because of the much smaller mass of the c
quark.

3 The mass function for heavy mesons

In the previous section we looked at the qualitative fea-
tures of the spectra of heavy mesons. Now we will try to
reproduce the quantitatively measured masses. In Figs. 3
and 4 we have shown the observed spectra of the D and B
mesons. The mass formula for heavy mesons in our model
is:

M =
4
3
BR3 +

C

R
+mQ +

√
pq

2 +mq +
8
3
αs

M

κ

4κ2 − 1

×
(
F (F + 1) − j(j + 1) − 3

4

)
I, (17)

where I is an integral over the radial wave functions

I =
1
N

∫ R

0
dr

(
2 +

r3

R3

)
f(r)∗g(r). (18)

Fig. 3. D-meson spectra and transition lines

Fig. 4. B-meson spectra and transition lines

When calculating the Coulomb potential in classical
electrodynamics, it is common to choose

V (r) = 0 for r −→ ∞. (19)

Inspired by this, we adjust the potential inside the bag to
be zero at the surface of the bag [12]:

V (r) = −ξ

r
−→ −ξ

(
1
r

− 1
R

)
. (20)

Now the value of the potential at the bag surface will
be zero, independent of the radii of the different mesons.
Because of this transformation, the light quark gets a con-
tribution ξ/R to the energy.

The second term, C/R, in (17) is believed to represent
the zero-point energy in the bag. When one quantizes a
radiation field, there will always be an infinite zero-point
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Table 1. The parameters are B1/4 = 161MeV, ξ = 0.538 (αs = 0.404), mu = md = 10MeV,
and mb = 4627MeV; eq = eQ = −1/3 for d and b quarks and eq = eQ = 2/3 for u and c
quarks

Experimental data Theoretical results

Mass (MeV) Mass (MeV) F P State Radius (GeV−1) µm/µN

B 5279.4 ± 2.2 [15] 5279 0− 1S1/2 3.94 0
B∗ 5324.9 ± 1.8 [15] 5325 1− 1S1/2 3.94 1.52eq + 0.203eQ

B0 not observed 5592 0+ 2P1/2 4.50 0
B1 not observed 5671 1+ 2P1/2 4.50 0.625eq + 0.203eQ

B1 5725 [16] 5623 1+ 2P3/2 4.47 1.93eq + 0.101eQ

B2 5737 [16] 5637 2+ 2P3/2 4.47 2.33eq + 0.203eQ

B′ 5859 [17] 5859 0− 2S1/2 4.90 0
B′∗ not observed 5967 1− 2S1/2 4.90 0.597eq + 0.203eQ

energy term, but since physical quantities are often en-
ergy differences, the zero-point energy falls out. However,
when the quantization is carried out in a finite cavity, as
in our model, there will be additional pieces of the zero-
point energy that depend on the size of the cavity. This
is represented by the term C/R. The constant C can be
calculated if we believe that the zero-point energy gives
rise to the Casimir energy. The Casimir energy inside a
perfectly uncharged spherical shell has been calculated by
K. A. Milton, L. L. DeRaad, Jr., and J. Schwinger [13].
They obtained the value E = 0.09235/(2R). To find the
value in our model, we simply have to multiply the value
by eight, because there are eight gluonic radiation fields:

C ' 0.37. (21)

We have determined the masses by minimizing the mass
function by the relation:

∂M

∂R
= 0. (22)

The integral in (18) turns out to be

1
mQR2 . (23)

Since pq ∼ 1/R, it is clear that when R −→ 0, I will
dominate. If the factor in front of the hyperfine splitting is
negative, (17) will, for some choice of the parameters, have
no finite minima. When the radius becomes small, we can-
not neglect the repulsion of the heavy quark, and thus the
model becomes meaningless. This is a well-known prob-
lem, and the usual way of dealing with it is to argue that
the divergence will disappear when we calculate higher-
order corrections. The procedure, then, is to minimize the
energy with respect to R before adding the hyperfine term
[14]. In our model, states with same J and L will then
have equal radii.

4 Heavy meson masses

First of all, we have to determine the parameters in the
model. There are four parameters the strong coupling con-
stant (αs), the bag constant (B), the heavy-quark mass

(mQ) and the light-quark mass (mq). There are, of course,
many ways of determining the parameters; we have chosen
to look at the B mesons. We determine αs, B,mb from the
observed masses of the B,B∗ and B′ mesons, and since
the u and d quark have a small mass, we have assigned to
them a (rather unimportant) mass of 10 MeV. The calcu-
lated results are shown in Table 1

In Table 1, there are only given uncertainties for the
1S1/2 states. This is because the values of the masses for
the 2P3/2 and the lowest 2S1/2 states were found in [16]
and [17] as a fit to the experimental data, and it is not
quite clear how to put errors to these numbers.

Unfortunately we see that the calculated masses for
the B1 and B2 mesons are almost exactly 100 MeV below
the experimental values. However, we see that the splitting
between the two P3/2 mesons is quite well described. One
may wonder if there is another set of parameters that will
give us a good fit to all the experimental masses listed in
Table 1. We believe that this is not so. The parameter in
the system which has most influence on the spectra is ξ.
In Fig. 1, we plotted the energy levels for ξ between 0 and
0.9. The main problem is that the P states do not move
much in the direction of the 2S1/2 state when ξ increases.
The boundary condition (8) clearly gives a wrong level
splitting. A hope for the model would be that the state
we used as B′ is not the right one. If we used the B1 and
B2 states (together with B and B∗) as a normalization,
the resulting B′ would have a mass around 6020 MeV.

Now we have the value for the strong coupling, the
bag constant, and the b-quark mass. In order to calculate
the D- and Bs-meson masses, we have to find the c- and
s-quark masses. This is done by demanding that:

m(DExp) −m(DTheor) ≈ m(D∗
Theor) −m(D∗

Exp) (24)

and the s-quark mass by demanding that:

m(BsExp) −m(BsTheor)≈m(B∗
s Theor) −m(B∗

s Exp). (25)

The results are listed in Table 2.
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Table 2. The parameters are B1/4 = 161MeV, ξ = 0.538 (αs = 0.404), mb =
4627MeV, mc = 1294 MeV, and ms = 231 MeV; eq = eQ = −1/3 for d and b quarks
and eq = eQ = 2/3 for u and c quarks

Experimental data Theoretical results

Mass (MeV) Mass (MeV) F P State Radius (GeV−1) µm/µN

D 1866.8 ± 1.1 [15] 1854 0− 1S1/2 3.94 0
D∗ 2008.4 ± 0.7 [15] 2022 1− 1S1/2 3.94 1.52eq + 0.725eQ

Bs 5369.6 ± 2.4 [15] 5363 0− 1S1/2 3.91 0
B∗

s 5416.3 ± 3.3 [15] 5424 1− 1S1/2 3.91 1.52eq + 0.203eQ

B0s not observed 5667 0+ 2P1/2 4.47 0
B1s not observed 5737 1+ 2P1/2 4.47 0.619eq + 0.203eQ

B1s 5874 [16] 5718 1+ 2P3/2 4.45 1.93eq + 0.101eQ

B2s 5886 [16] 5732 2+ 2P3/2 4.45 2.31eq + 0.203eQ

B′
s not observed 5887 0− 2S1/2 4.87 0

B′∗
s not observed 6008 1− 2S1/2 4.87 0.593eq + 0.203eQ

5 Decays

We have looked at the electromagnetic and pionic transi-
tions between mesons listed in Tables 1 and 2. The pionic
transitions are calculated using the surface-coupling ver-
sion of the chiral bag model [18]. In this model, a pion
field carries the axial current outside the bag produced by
the light (u or d) quark inside the bag. This makes the
model chirally symmetric for massless u and d quarks and
the interaction between the bag and the pion field is given
by:

Lint = − i
2fπ

ψγ5τ · φψ∆s, (26)

τi are the Pauli isospin matrices, and φ an isovector rep-
resenting the pion field. ∆s is a covariant-surface delta
function.

The calculation of transitions involving pions is then
straightforward; some expressions for pionic transitions
are listed below.

0− −→ 1−0−



Vfi = −i

fπ

√
π

3V ωk
P (R)

×
(
Y −1

1 (k̂) + Y 1
1 (k̂) + Y 0

1 (k̂)
)
Cπ

Γ (B′ −→ B∗π) = 1
4π

k
f2

π
|P (R)Cπ|2

(27)

0− −→ 0+0−


Vfi = −1

fπ

√
π

V ωk
S(R)Y 0

0 (k̂)Cπ

Γ (B′ −→ B0π) = 1
4π

k
f2

π
|S(R)Cπ|2

(28)

2+ −→ 0−0−


Vfi = − 1

fπ

√
2π

5V ωk
D(R)Y 2

2 (k̂)Cπ

Γ (B2 −→ Bπ) = 1
10π

k
f2

π
|D(R)Cπ|2

(29)

2+ −→ 1−0−



Vfi = 1

fπ

√
2π

5V ωk
D(R)

×
(
Y 2

2 (k̂) − 1√
2
Y 1

2 (k̂)
)
Cπ

Γ (B2 −→ B∗π) = 3
20π

k
f2

π
|D(R)Cπ|2

(30)

1+ −→ 1−0−



Vfi = 1

fπ

√
π

10V ωk
D(R)

(√
6Y 2

2 (k̂)

− √
3Y 1

2 (k̂) + Y 0
2 (k̂)

)
Cπ

Γ (B1(P3/2) −→ B∗π) = 1
4π

k
f2

π
|D(R)Cπ|2

(31)

1+ −→ 1−0−




Vfi = 1
fπ

√
π

V ωk
S(R)Y 0

0 (k̂)Cπ

Γ (B1(P1/2) −→ B∗π)
= 1

4π
k
f2

π
|S(R)Cπ|2

(32)

0+ −→ 0−0−


 Vfi = − 1

fπ

√
π

V ωk
S(R)Y 0

0 (k̂)Cπ

Γ (B0 −→ Bπ) = 1
4π

k
f2

π
|S(R)Cπ|2

(33)

1− −→ 0−0−




Vfi = −i
fπ

√
π

3V ωk
P (R)Y 1

1 (k̂)Cπ

Γ (D∗ −→ Dπ)
= 1

12π
k
f2

π
|P (R)Cπ|2.

(34)

In these formulas,

S(R) ≡ R2 (
f∗

β(R)gα(R) + g∗
β(R)fα(R)

)
j0(kR)

(S wave) (35)

P (R) ≡ R2 (
f∗

β(R)gα(R) + g∗
β(R)fα(R)

)
j1(kR)

(P wave) (36)

D(R) ≡ R2 (
f∗

β(R)gα(R) + g∗
β(R)fα(R)

)
j2(kR)

(D wave). (37)

The index α(β) refers to the initial (final) meson and

Cπ ≡
{

1 for π±
1√
2

for π0.
(38)

The above transition rates (27)–(34) have been numeri-
cally calculated and are listed in Table 3.



508 A. Hiorth Örsland, H. Högaasen: Strong and electromagnetic decays of excited heavy mesons

Table 3. Pion decays

JPα
α −→ JPβ

β π α −→ βπ Theor (MeV) gαβπ

0− −→ 1−π B′ −→ B∗π+ 84.3 42.8
B′ −→ B∗π0 42.2 30.1

0− −→ 0+π B′ −→ B0π
+ 45.3 23.0

B′ −→ B0π
0 22.7 16.2

2+ −→ 1−π B2 −→ B∗π+ 9.17 55.8
B2 −→ B∗π0 4.67 39.4

2+ −→ 0−π B+
2 −→ B0π+ 9.74 43.5

B0
2 −→ B0π0 4.94 30.7

B+
2 −→ B+π0 4.98 30.7

B0
2 −→ B+π− 9.82 43.5

1+(P3/2) −→ 1−π B1 −→ B∗π+ 13.3 72.8
B1 −→ B∗π0 6.71 51.1

1+(P1/2) −→ 1−π B1 −→ B∗π+ 92.7 27.1
B1 −→ B∗π0 46.1 19.0

0+ −→ 0−π B+
0 −→ B0π+ 93.7 28.5

B0
0 −→ B0π0 46.8 20.1

B+
0 −→ B+π0 46.9 20.1

B0
0 −→ B+π− 93.7 28.5

1− −→ 0−π D∗+ −→ D0π+ 6.01 10−2 17.1
D∗+ −→ D+π0 2.72 10−2 12.1
D∗0 −→ D0π0 3.88 10−2 12.1

In addition to the partial widths listed in Table 3, we
have also calculated the coupling constants (on the right
in Table 3), by using the following definition:

gαβπ ≡
√
Γ (α −→ βπ)24πM2

α

k2L+1 (39)

where k is the pion momenta and Mα the mass of the
decaying particle. The dimension of the couplings goes as
(GeV)−L+1, where L is the relative angular momentum
between the decay products. Only L = 1 transitions, such
as 1− −→ 0−π are then dimensionless by the definition
(39).

It is also possible to calculate the coupling gB∗Bπ; the
B∗ emits a virtual pion. This coupling has been calculated
in the rest system of the heavy meson at zero recoil; the
result is:

gB∗Bπ± =

√
2
9
R

fπ
|R2 (

f∗
β(R)gα(R) + g∗

β(R)fα(R)
) |MB∗

(40)

gB∗Bπ0 =

√
1
9
R

fπ
|R2 (

f∗
β(R)gα(R) + g∗

β(R)fα(R)
) |MB∗ .

(41)

Using the wave functions for the B∗ and B meson, we
obtain

gB∗Bπ+ = 45.6, (42)
gB∗Bπ0 = 32.2. (43)

Table 4. Photon decays

JP
α −→ JP

β π α −→ βπ Theor (keV)

0− −→ 2+ + 1− B∗∗0 −→ B0
2γ 2.62 10−3

B∗∗+ −→ B+
2 γ 1.05 10−2

0− −→ 1+ + 1− B∗∗0 −→ B0
1γ 1.77 101

B∗∗+ −→ B+
1 γ 7.07 101

0− −→ 1− + 1− B∗∗0 −→ B∗0γ 1.20 10−1

B∗∗+ −→ B∗+γ 7.89 10−1

0− −→ 0− + 1− B∗∗0 −→ B0γ 0
B∗∗+ −→ B+γ 0

2+ −→ 1+ + 1− B0
2 −→ B0

1γ 6.26 10−2

B+
2 −→ B+

1 γ 2.50 10−3

2+ −→ 1− + 1− B0
2 −→ B∗0γ 6.76 101

B+
2 −→ B∗+γ 2.70 102

2+ −→ 0− + 1− B0
2 −→ B0γ 4.08

B+
2 −→ B+γ 1.63 101

2+ −→ 1+ + 1− B0
s2 −→ B0

s1γ 3.38 10−4

2+ −→ 1− + 1− B0
s2 −→ B∗0

s γ 5.86 101

2+ −→ 0− + 1− B0
s2 −→ B0

sγ 4.62

1+ −→ 1− + 1− B0
1 −→ B∗0γ 2.73 101

B+
1 −→ B∗+γ 1.09 102

1+ −→ 0− + 1− B0
1 −→ B0γ 4.10 101

B+
1 −→ B+γ 1.64 102

1+ −→ 1− + 1− B0
s1 −→ B∗0

s γ 2.56 101

1+ −→ 0− + 1− B0
s1 −→ B0

sγ 3.46 101

1− −→ 0− + 1− B∗0 −→ B0γ 6.41 10−2

B∗+ −→ B+γ 2.72 10−1

B∗0
s −→ B0

sγ 5.10 10−2

D∗0 −→ D0γ 7.18
D∗+ −→ D+γ 1.73

The coupling of photons to the mesonic states are done
straightforwardly by using the interaction Lagrangian:

Lint = eqeψγ · Aψ (44)

Some expressions for electromagnetic transitions are listed
below:

0− −→ 2+1−
{
Γ = 24

5 αe
2
qωk

∣∣∫ dxj2(F +G)
∣∣2 (45)

0− −→ 1+1−



Γ = 8

3αe
2
qωk ( 1

5

∣∣∫ dxj2(F +G)
∣∣2

+
∣∣∫ dx(Fj2 −Gj0)

∣∣2
+ 1

3

∣∣∫ dx(Gj2 +Gj0)
∣∣2) (46)

0− −→ 1−1−
{
Γ = 24

5 αe
2
qωk

∣∣∫ dxj1(F +G)
∣∣2 (47)

0− −→ 0−1−
{
Γ = 0 (48)
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Table 5. Comparison of theoretical and experimental results

Theoretical Experimental

[19](MeV) [20](keV) [21](keV) Our work [15](keV)

Γ (B2 −→ B∗π) 11 − − 13.8MeV −
Γ (B2 −→ Bπ) 10 − − 14.7MeV −
Γ (B1 −→ B∗π) 14 − − 20.0MeV −
Γ (B∗+ −→ Bγ) − − 0.38 ± 0.06 0.272keV −
Γ (B∗0 −→ B0γ) − − 0.13 ± 0.03 6.41 10−2keV −
Γ (B∗

s −→ Bsγ) − − 0.22 ± 0.04 5.10 10−2keV −
Γ (D∗+ −→ D0π+) − 69.1 − 60.1keV < 91
Γ (D∗+ −→ D+π0) − 32.1 − 27.2keV < 43
Γ (D∗0 −→ D0π0) − 46.0 − 38.8keV < 85
Γ (D∗+ −→ D+γ) − 0.919 0.23 ± 0.1 1.72keV < 4.2
Γ (D∗0 −→ D0γ) − 23.5 12.9 ± 2 7.18keV < 54

2+ −→ 1+1−




Γ = 2
375αe

2
qωk

(
87
4

∣∣∫ dxj1(F +G)
∣∣2

+52
∣∣∫ dx(Gj3 +Gj1)

∣∣2
+2

∣∣∫ dx(Gj3 − Fj1)
∣∣2

+27
∣∣∫ dx(Fj3 −Gj1)

∣∣2
+27

∣∣∫ dx(Fj3 + Fj1)
∣∣2

+ 3501
7

∣∣∫ dxj3(F +G)
∣∣2)

(49)

2+ −→ 1−1−



Γ = 4

3αe
2
qωk

(
11
10

∣∣∫ dxj2(F +G)
∣∣2

+
∣∣∫ dx(Gj2 − Fj0)

∣∣2
+ 1

3

∣∣∫ dx(Fj2 + Fj0)
∣∣2) (50)

2+ −→ 0−1−
{
Γ = 6

5αe
2
qωk

∣∣∫ dxj2(F +G)
∣∣2 (51)

1+ −→ 1−1−



Γ = 2

9αe
2
qωk

(
13

∣∣∫ dxj2(F +G)
∣∣2

+ 2
3

∣∣∫ dx(Fj2 + Fj0)
∣∣2

+2
∣∣∫ dx(Gj2 − Fj0)

∣∣2) (52)

1+ −→ 0−1−



Γ = 8

9αe
2
qωk

(
− 1

4

∣∣∫ dxj2(F +G)
∣∣2

+ 1
3

∣∣∫ dx(Fj2 + Fj0)
∣∣2

+
∣∣∫ dx(Gj2 − Fj0)

∣∣2) (53)

1− −→ 0−1−
{
Γ = 4

3αe
2
qωk

∣∣∫ dxj1(F +G)
∣∣2 , (54)

where we have defined:

F ≡ x2fβ(x)∗
gα(x), (55)

G ≡ x2gβ(x)∗
fα(x), (56)

jl ≡ jl(ωkx). (57)

The numerical values for the above expressions are
shown in Table 4. The transitions in Table 4 are very sup-
pressed in comparison with those listed in Table 3. This
is, of course, expected; the smaller phase space for pion
decays is compensated for by the much stronger pion cou-
pling (relative to the electromagnetic coupling).

6 Comparison with theoretical
and experimental results

We have calculated a lot of partial widths for different
particles, listed in Tables 3 and 4. To date, very little is
known on the experimental front, but there are a lot of
theoretical predictions. We will compare our results with
the known experimental results, and some of the theoret-
ical results; as we shall see, there is no conflict between
our predictions and the experimental information.

In Table 5, we have listed some theoretical and ex-
perimental results. For the experimental limits, we have
assumed that the widths of D∗0 have the same upper limit
as the widths of D∗±. It may not be clear from Table 5,
but the theoretical predictions vary a lot. In [22], there
is a summary of theoretical estimates. For the particular
decay D∗+ −→ D0π+ that determines the coupling con-
stant gD∗Dπ, the predicted rates vary from 10keV (QCD
sum rules) to more than 100keV (quark model + chiral
HQET). We obtained Γ (D∗+ −→ D0π+) = 60.1keV,
which is close to the value 61–78 keV from P. Cho and
H. Georgi [23], who make calculations with chiral HQET.
The value of the coupling gB∗Bπ+ vary from gB∗Bπ+ =
15 ± 4 (QCD sum rules) to gB∗Bπ+ = 64 (quark model +
chiral HQET); we found gB∗Bπ+ = 45.6.

We have calculated most, but not all, decay modes
for the excited states. The ππ modes are missing. As we
believe that these modes are less important than the emis-
sion of single pions in the decays, we still can give approx-
imate values of the decay widths; these are:

2S1/2 : Γ (B′) ' 195MeV (58)

2P3/2 : Γ (B2) ' 29MeV Γ (B1) ' 20MeV (59)

2P1/2 : Γ (B1) ' 139MeV Γ (B0) ' 141MeV (60)

1S1/2 : Γ (D∗+) ' 89keV Γ (D∗0) ' 46keV (61)

The P1/2 states are naturally much wider than the
P3/2 states, because they decay only through an S wave,
whereas the P3/2 states decay through a D wave. The full
widths of the P states indicated by a preliminary exper-
iment [24] are Γ (B(P3/2)) ' 20 MeV and Γ (B(P1/2)) '
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Table 6. Comparison of CLEO data and our predictions

CLEO Our calculations

Br(D∗+ −→ D+γ) (1.68 ± 0.51)% 1.94%
Br(D∗+ −→ D+π0) (30.73 ± 0.63)% 30.55%
Br(D∗+ −→ D+π+) (67.59 ± 0.70)% 67.51%

150 MeV. This is, as we see, in good agreement with our
results. Since the P1/2 states are so broad, they are very
hard to reconstruct from the experimental results, and so
far there has not been any really precise measurement of
their masses.

The CLEO report [25] contains the best measurement
of the D∗+ branching fractions, a large improvement over
what can be found in the Particle Data Book [15]. Since
we have calculated the width of the D∗+ meson (in (61),
it is easy to calculate the branching ratios. The results are
shown in Table 6 together with the CLEO results. Our
results are clearly in good agreement with the experimen-
tal data. We recognize, however, that branching ratios are
one thing, and particular decay widths another. We get
the correct ratio between pionic and electromagnetic de-
cays. As the coupling of the electromagnetic field to the
quarks is simple, we naturally have some confidence in the
calculated electromagnetic transition rates. Therefore we
believe that our calculated pionic rates cannot be too far
off from what will be measured in the future.
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(1968)

11. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weis-
skopf, Phys. Rev. D 9, 3471 (1974)

12. H. Hogaasen, J.M. Richard, P. Sorba, Phys. Lett. B 119,
272 (1982)

13. Kimball A. Milton, Lester L. DeRaad, Jr., Julian
Schwinger, Ann. of Phys. 115, 388 (1978)

14. Dale Izatt, Carleton Detar, Mark Stephenson Nucl. Phys.
B 199, 269 (1982)

15. C. Cisco, et al., Euro. Phys. J. C 3, 1 (1998)
16. OPAL Collaboration, R. Akers, et al., Z. Phys. C 66, 19

(1995)
17. C. Weiser, Talk given at the XXVII International Confer-

ence on High Energy Physics, Warsaw, 25–31 July 1996
18. A.W. Thomas, Adv. Nuc. Phys. 13, 1 (1983)
19. Estia J. Eichten, Christopher T. Hill, Chris Quigg, Phys.

Rev. Lett. 71, 4116 (1993)
20. Patric J. O’Donnel, Q.P. Xu, Phys. Lett. B 336, 113 (1994)
21. Shi-Lin Zhu, W-Y.P. Hwang, Ze-sen Yang, Mod. Phys.

Lett A 12, 3027 (1997) see also: Yuan-Ben Dai, Shi-Lin
Zhu, Phys. Rev. D 58, 074009 (1998); Yuan-Ben Dai, Shi-
Lin Zhu, Euro. Phys. J. C 6, 307 (1999); Shi-Lin Zhu and
Yuan-Ben Dai, Phys. Rev. D 58, 094033 (1998); Shi-Lin
Zhu, Yuan-Ben Dai, [hep-ph/9810243]

22. V.M. Belyaev, V.M. Braun, A. Khodjamirian, R. Rückl,
Phys. Rev D 51, 6177 (1995)

23. Peter Cho, Howard Georgi, Phys. Lett. B 296, 408 (1992)
24. DELPHI Collaboration, P. Abreu, et al., Phys. Lett. B

345, 598 (1995)
25. J. Bartelt, et al., Phys. Rev. Lett. 80, 3919 (1998)


